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Abstract - Many optimisation techniques have recently been developed. Several mimic natural activity or another theory, such as the 
Grey Wolf Optimiser, which emulates wolf hunting mechanisms to find a global minimum, and Particle Swarm Optimisation, which 
uses birds’ flocking behaviour to avoid each local minimum. Each developed algorithm uses guidelines to improve its mimicry and 
reach its goal. This work proposes the pivot optimiser, a new evolution optimisation algorithm inspired by the multidimensional 
geometric method to create a unique evolution in each generation. The goal of this imitation is to make an algorithm suitable for a 
multi-situation problem with a stable result. The results show that the pivot optimiser outperformed on competitive problems 
compared with other competitive optimisers. 
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I. INTRODUCTION 

 
Developing an algorithm to solve optimisation problems 

has been a significant and challenging topic in computer 
science research [1]. Over the past decade, a massive number 
of optimisation algorithms have been developed and 
researched [2]–[4]. 

Many successful optimisers have been suggested as well-
known optimisation algorithms based on their ability to 
produce satisfactory results in terms of performance 
benchmarking. Estimating and comparing algorithms’ 
performance is especially important because every algorithm 
was invented for an individual purpose by an individual 
researcher. Accordingly, a standard benchmarking method is 
necessary for each category. Several common optimisation 
problems occur in test functions, such as the Rastrigin, Ackley 
and Rosenbrock functions. Each function contains different 
situations and characteristics to challenge the algorithm’s 
performance. The goal in the continued search for a fitness 
value is to find a global minimum [5] [6]. 

Meta-heuristic optimisers have become an immensely 
popular method to solve these problems for two main reasons: 

1) their highly flexible implementation. Most 
competitive optimisation problems present in black box form 
[2]. The researcher can easily apply the suggested algorithm 
to any problem by simply adjusting the most practical 
representive parameter and adapting input(s) and output(s) to 
the correct form [7]. 

2) their simple concept design. Because of derivation-
free mechanisms in the implementation of meta-heuristic 
algorithms (unlike most deterministic algorithms, which use 
gradient-based calculations such as compass search [8]), 
meta-heuristic algorithms require fewer parameters for 
calculation and can apply some stochastic methods directly 
[9]. 

In addition, many successful algorithms are meta-
heuristic, including Particle Swarm Optimisation (PSO), Grey 
Wolf Optimiser (GWO) and Differential Evolution (DE). It is 
well known that meta-heuristic algorithms are an excellent 
choice for recently developed optimisers.  

Solving an optimisation problem does not involve finding 
the exact best answer. Rather, it involves finding a satisfying 
answer or the nearest best answer. In fact, any problem has a 
nearly infinite number of possible solutions. It is impossible 
to know where the best solution is located, and no 
computation theory to date can comprehensively search all 
solutions in a continuous space. Many algorithms are 
developed from another theory or concept – such as 
Darwinian evolution, social behaviours and astronautics 
theory – that is deemed ‘reasonable’ enough to provide a 
solution. As mentioned above, the algorithm is not designed 
to support the optimisation problem directly; rather, the 
researcher adapts the existing theory to solve the problem. In 
these efforts, representation is a serious subject to consider. 
While the theory may itself be reasonable, without fair 
representation, the reasonableness may not fully extend to the 
algorithm. Since the algorithm’s mechanism is replicated from 
the theory, choosing the correct theory is essential. 

In the optimisation research literature, we found some 
characteristics that increase our algorithm’s all-around 
performance for the searching area. Before the success of 
meta-heuristic algorithms, the golden age of the ‘direct 
search’ searching algorithm family reigned [10]. In 
optimisation, the direct search family of algorithms utilises a 
non-population base with a deterministic algorithm that 
defines some actual searching methods [11]. These include 
golden section search, the Nelder–Mead method and the 
Luus–Jaakola (LJ) optimisation procedure [12]–[14]. Direct 
search is not the most competitive algorithm for finding the 
best solution, but such algorithms have consistently found the 
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expected average result. No matter the searching method, each 
algorithm will cover almost the entire searching area or 
boundaries, meaning that the decision vector of the resulting 
solution will locate nearly the best solution [15]. The 
mechanism leading to this phenomenon is the 
comprehensiveness of the algorithm’s searching area. 
Accordingly, one of the indispensable characteristics of a 
good optimiser is its comprehensiveness. At present, the direct 
search algorithm family is no longer popular in the research 
field because of its complexity and lack of coherent 
mathematical analysis [16]. 

We believe that the secret behind the success of direct 
search is the theory implemented in these algorithms. While 
many algorithms mentioned above were inspired by existing 
principles, we are interested in one particular category: 
geometric theory. Geometric theory is concerned with the 
shape, size and relative position of figures as well as the 
properties of space [17]. This theory’s main goal is to solve 
real-world measurement problems by simplifying them into 
analysable components, such as lines, points, planes, 
distances, angles and surfaces [18]. Geometric theory has a 
long history that dates back to the sixth century [19]. Because 
of the theory’s wide application and logical nature, it 
continues to be used to the present day. For the above reason, 
we selected the geometric method as the inspiration for the 
algorithm implemented in our optimiser. 

In this paper, we address the issue of novel evolutionary 
optimisation, applying the geometric method to ensure that the 
algorithm is able to retain the population’s uniqueness and 
evolve using a reasonable method to produce an outstanding 
generation as a result of the optimisation problem. The 
existing related evolutionary algorithm (EA) is discussed in 
Section II. The theory and implemented methods are 
described in Section III. The simulation methods and results 
are presented in Section IV. Finally, Section V concludes the 
paper and suggests directions for future work. 

 
II. RELATED WORK 

 
EAs are among the most successful optimisation algorithm 

families [20]. These algorithms take advantage of the 
population base concept that allows the computation process 
to keep several potential solutions, called ‘populations’, and 
evolve them to become better solutions for the next generation 
of populations [21]. 

The EA family was inspired by biological evolution in 
nature [22]. The mechanisms of the evolutionary solution 
process thus resemble natural evolutionary methods, such as 
selection, mutation and crossover. EA’s mimickry of natural 
evolutionary methods reinforces its distinction as one of the 
most powerful and reasonable methods to solve optimisation 
problems. 

The genetic algorithm was the first evolution-inspired 
algorithm to be applied to optimisation [23]. It introduces the 
implementation of natural evolutionary theory [24]. This 

algorithm can feasibly be applied to any problem due to the 
reasonable nature of the algorithm itself. 

Pietro et al. analysed the performance of the Simple EA 
(N+1-ES), which implements the simplest version of the 
population base algorithm by recombining the best and worst 
of the population as the candidate offspring and performing a 
decision process to replace members of the population pool 
[25]. 

Because biological evolution theory is neutral, some 
neutral evolution methods cannot be directly adapted for the 
optimisation context. R. Storn et al. developed an EA called 
DE whose combination method could adjust itself to fit the 
problem [26] [27]. This method adapts the neutral evolution 
method as the mathematical optimisation evolution method. 
The term ‘mutation’ refers to selecting one of the best 
individuals in the population and making some mathematical 
variance on its chromosome (decision vector) as a new 
candidate solution. The term ‘crossover’ refers to taking 
several populations and combining some of them, while the 
decision vector becomes the new candidate solution. Until 
recently, this method has been the prototype for EAs. 

The above shows that DE has been highly sensible but 
demonstrates a lack of particles because the algorithm did not 
define the exact principle for creating offspring. Because users 
needed to define mathematical evolution methods to utilise in 
the algorithm, DE is overly complex in its application and 
unsuitable for some optimisation problems.  

Farmani et al. [28] developed an algorithm called Self-
Adaptive DE (SADE) that combines DE and mathematical 
evolution method and enables the algorithm to adapt the 
evolved method to suit the problem. It is a robust optimisation 
algorithm because it is suitable for most problem-solving 
styles without requiring the parameters to be adjusted. The 
benchmarking results are highly satisfactory compared to any 
other EA. 

Another efficiency optimisation algorithm called swarm 
intelligence (SI) was inspired by nature, especially biological 
systems [29]. J. Kennedy et al. [30] developed an optimiser 
termed Paritcal swarm optimiser (PSO) by observing bird 
flock and fish school movement, then replicating these 
animals’ formations and social interaction behaviours by 
representing particles as animals and representing the 
movement of an animal as the searching method in the system. 

Schlüter et al. [31] introduced the Extended Ant Colony 
Optimisation (GACO). The actions of ants in their colonies 
inspired this algorithm. In it, artificial ‘ants’ are assigned to 
locate optimal solutions by moving through a parameter space 
representing all possible solutions and synchronising optimal 
solutions using the pheromone mechanism. 

D. Karaboga et al. [32] introduced the Artificial bee 
colony algorithm (ABC). They analysed the foraging 
behaviour of honeybee swarms and determined that the bee 
population included three types: employed bees, who search 
among the best population; onlooker bees, who search across 
all populations; and scout bees, who locate new areas to 
search. 



www.manaraa.com

SOMSIN THONGKRAIRAT et al: A NOVEL EVOLUTION OPTIMIZATION ALGORITHM USING A . .  

DOI 10.5013/IJSSST.a.21.04.13                                           13.3                             ISSN: 1473-804x online, 1473-8031 print 

S. Mirjalili et al. [33] developed GWO based on the 
concept of the leadership hierarchy and hunting mechanisms 
of grey wolves. GWO utilises encircling prey mechanisms to 
find the truly local minimum of a problem. 

Because SI algorithms and EAs both use the population 
base concept, they may appear to be the same algorithm. 
However, their main ideas and implementation methods are 
completely different. 

All mentioned algorithm above can be fairly recognised as 
the dominant algorithm because each offers the best 
performance in comparison with a successive algorithm. 
These algorithms are dominant due to the ‘reasonableness’ of 
their methods. GACO and ABC use the equilibrium of the 
population to distribute search possibilities across all space. 
GWO uses the leadership of the alpha wolf when hunting prey 
to obtain the global minimum. This reasonableness makes the 
optimiser efficient. 

Another characteristic no less important than 
reasonableness is elitism. Elitism ensures that an algorithm 
produces a better solution for offspring in the next generation 
compared to the previous generation [34]. Elitist algorithms 
usually produce significantly better results and prevent the 
loss of satisfied offspring once produced [35] [36]. To ensure 
that an algorithm achieves elitism, the evolution and selection 
method must retain the ‘uniqueness’, or distinctive point, of 
each individual to guarantee that offspring will inherit only the 
good components in the next generation. 

 
III. GEOMETRIC METHOD 

 
This section first presents the geometric method 

implemented in the proposed optimiser. The details of the 
proposed pivot optimiser algorithm – in particular, the topic 
of mechanisms in algorithms and the justification for calling 
this algorithm ‘sensible’ – follow: 

 
A. Theory 

 
The standard form of a continuous optimisation problem 

is to minimise the objective function F(x) [37]. The solution, 
or x, is a set that contains several values named the ‘decision 
vector’ according to the number of dimensions in the problem. 
In this paper, we will describe only single-objective 
optimisation; that is, the result of the objective function can 
only be a single real value. Finding the best solution is the goal 
of this optimisation. 

As described above, the geometric method relates to 
points, lines and space. Many methods are standard 
methodologies to solve mathematical problems [38]. The 
main idea in applying this method to optimisation involves 
using the property in geometric terms to represent the property 
in the optimisation context as follows: 

 
- Space in the Euclidean domain corresponds to the 

continued search space in the optimisation.  

- Vector in space corresponds to the population by 
representing position in n-space as the decision vector in 
n-dimension. 
Thus, all products of calculations can be represented 

directly in any direction. This section will rewrite theory in the 
form of multidimensional and computable expressions. 

 
A1. Linear Distance and Angular Distance 

 
The first and simplest method applied is distance. Any two 

points on the Euclidean domain (any n-dimension) can be 
measured with the ordinary straight-line distance between 
them using the Euclidean distance (ED), as in the following 
equation [39]: 

 2
1

n
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Where x and y are the points in the n-dimension, the 
distance between them can be calculated as shown in (1). This 
method also calculates the property named ‘crowding 
distance’, which, in some optimisation algorithms, defines the 
distance between solution x and solution y [40]. This property 
resembles linear distance but is used for the result solution, 
unlike the distance previously mentioned. 

Another distance quantity is angular distance. Any vector 
in the same domain can be compared with another using the 
angle difference value according to the following equation: 
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where θ indicates the reference angle at the origin. In this 
paper, we intend to change the reference point to any position 
in space. Accordingly, we must bias the reference vector to x 
and y to move their reference point [Fig. 1]. This equation can 
be expressed as follows: 
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The difference between any two points in 
multidimensional space can be calculated using Equation (3), 
where ref is the bias vector used to change the reference point 
from the origin to the ref point in n-dimensional space. This 
angle can represent the quality of betweenness for any point 
[41] and determine each individual’s angular distance. 
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Figure 1. Linear distance and angular distance 

 
Fig. 1 shows linear distance and angular distance in two-

dimensional space. Dxy describes linear distance in the 
Euclidean domain for x and y, and θxy describes angular 
distance with bias from the reference point. 

 
A2. Mahalanobis Distance 

 
The ED is the absolute individual quantity of distance 

reference with the domain. However, in the case of 
population-based optimisation algorithms, there is another 
way to measure distance more effective. 

The Mahalanobis distance (MD) is an alternative way to 
measure the distance between points in space using standard 
deviations for each dimension in the group of data [42]. It is 
thus a useful property that can explain the outlyingness of 
multivariate observations in the data set. MD can be calculated 
as follows: 

 2
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n
i i

xy
i i

x y
MD

s


    (4) 

where Si is the standard deviation of x and y for each 
dimension. However, MD is equal to ED if the dataset’s bound 
is diagonal. In this paper, we use MD to eliminate unnecessary 
populations located too close to one another. 

 
Figure 2. Mahalanobis space compared with Euclidean space 

 
Fig. 2 shows the distinction between the same member in 

the Mahalanobis and Euclidean domains in two-dimensional 
space. The three contours on both sides represent the same 
distance in different domains. D1, D2 and D3 are the one-, two- 

and three-unit contours in the Euclidean domain. MD1, MD2 
and MD3 represent the same distances as D1, D2 and D3, 
respectively, in Mahalanobis space. 

If the distribution of coordinates is not uniform, the ED 
and MD will not be equal. The MD domain’s contour and 
distance trend will thus follow all members in space and can 
be used to classify the group of data [42]. 

 
A3. Uniform and Normal Distribution 

 
Almost all meta-heuristic optimisers use a random method 

to create new solutions, unlike deterministic optimisers, which 
create variances to increase the possibility of finding a better 
solution. The simplest random method applied in optimisers 
is random uniform distribution, which equally distributes all 
possible output values [43]. The probability density function 
of random uniform distribution is presented in Equation (5) 
below: 

  1
| ,P i a b

b a



      (5) 

Equation (5) shows the parameters of the uniform random 
method. When a is the lower bound and b is the upper bound, 
the random output is equally likely to be any value between a 
and b. Many evolutionary optimisers calculate upper and 
lower bounds as a and b and use this kind of random method 
to evolve a new decision vector for each dimension. From our 
point of view, the use of this method sometimes creates a 
unreasonable population. In multidimensional optimisation, 
every new decision vector for each dimension should be 
created according to the same trend. However, in this random 
method, each dimension is not related to the others. To force 
the random values to follow the same trend, we suggest 
normal or Gaussian distribution with some control variables, 
as follows: 
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In Equation (6), μ is the mean output value, and σ controls the 
standard deviation for control of variance. A normal 
distribution is usually applied in statistics and is often used in 
the natural and social sciences. We chose the normal random 
method as reasonable because it can control the trend of 
randomness using several parameters. 

 
Figure 3. Difference between uniform and normal distributions 
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Fig. 3 shows the output density of uniform distribution 
from (5). The range of output data is between a and b, and the 
possibility of all numbers is equal. In the normal distribution 
as calculated in (6), the highest density of distribution is μ. As 
such, the highest possible number is μ, and the possibility of 
distribution will decrease as the distance from μ increases. The 
σ variable controls the standard deviation of the random 
method. 

 
B. Proposed Method: Pivot Optimiser 

 
We developed the pivot optimiser based on the above-

described theory. One pivot represents one member of the 
population pool. Two types of pivots exist: potential and 
control. While both use the same mechanism to search for the 
best solution, they have different purposes. Potential pivots 
are used to find the potential answer or best answer of the 
optimiser, while control pivots separate search ranges to cover 
all search space and prevent other pivots from repeatedly 
searching around unproductive areas. Next, the pivot 
optimiser algorithm is outlined. 

 
B1. Pivot 

 
In the proposed method, the pivot represents the individual 

population in the population pool. Like a typical optimiser, 
Each pivot contains a decision vector to search for the best 
solution, as well as several specific properties that relate to 
other pivots, including: 

 
- Linear distance list; 
- Angular distance list; 
- Nearest pivot (NP); and 
- Rival pivot (RP). 
 
The linear distance list is the ED list from the pivot to other 

neighbourhood pivots in the system sorted in ascending order. 
The NP is the closet pivot measured by linear distance. The 
first pivot in the linear distance order is thus the NP, and the 
NP position is used to determine further properties. 

From this point, other populations will be considered 
Candidate pivots (CPs) because every other pivot is used to 
determine the essential property of the RP. 

Next, the angular distance list is the list of angles between 
the NP and other CPs using the considered pivot as the 
reference, following (3). Finally, the RP is selected by the 
nearest neighbours placed in opposite areas of the NP or the 
angle between the NP and CP > π. 

 

 
Figure 4. Properties of each pivot 

 
Fig. 4 shows an example of the considered Pivot (P) with 

neighbourhood pivots and its NP and RP. Assume that there 
are eight pivots in the system and let P be the considered point. 
NP is the nearest pivot of P, and another pivot (C1–C7) is the 
CP, but RP (C1) is the nearest pivot in the opposite site. 
Accordingly, C1 is selected as the RP. 

Nevertheless, the system sometimes cannot find an RP 
because, in large dimensional problems, the possibility of 
finding another pivot in the opposite area in all dimensions is 
decreased, dependent on the number of populations. In these 
cases, the last population member in the angular distance list 
will be selected as the RP. 

Lastly, every pivot in the system will select its NP and RP 
to find the next result. The RP is the main path to determine 
the search range for the next solution because, in stochastic 
optimisation, it is difficult to conclude that the current position 
is the local minimum. As such, there are usually some 
locations around pivots that can offer a better solution. In the 
proposed method, RP and NP are used to calculate the search 
range around the pivot to find a better solution for the 
considered pivot.   
 
B2. Offspring Creation 

 
After each RP is selected, every pivot creates its offspring 

to serve as the next generation of the population. To classify 
pivots by their roles, all pivots will be sorted in ascending 
order by answer solution before being divided into two 
groups: lower and upper, controlled by a Lower factor (LF) 
and Upper factor (UF), respectively. LF is the ratio of the NP 
to the lower group, while UF is the ratio of NP to the upper 
group. LF and UF are adjustable depending on the problem 
but are set to 0.25 by default. 
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The lower group is called a potential pivot. This group 
contains an answer and decision vector suitable for finding a 
better solution. However, because the members of the lower 
group are produced and sorted, a high chance exists that the 
population will be clustered rather than spread across the full 
search space. The offspring from this group is called a 
potential solution. 

The upper group is called the control pivot. This group 
controls the search area to find new areas to search and push 
lower groups out of the local minimum. The new population 
created from the upper group is called a control solution. 

Another pivot between two groups is called an 
intermediate pivot. It is used to memorise the search history 
and prevent searches of unproductive areas and overly close 
pivots. Intermediate pivots were previously part of the lower 
or upper group due to the sorting mechanism. Accordingly, 
almost all of them are analysed in the lower and upper group 
phase. 

Usually, a competitive optimiser creates a population in 
the generation cycle [44]. One period of creation or one 
generation will produce a new population equal to the number 
of populations. In the proposed optimiser, we decide to 
produce offspring equal to the number of parents, as with the 
usual optimisers. 

Only pivots in the upper group and lower group are used 
to create offspring. The Potential factor (PF) is used to decide 
the number of populations in each group. PF is the population 
ratio of the lower and upper groups selected to be the parent. 
The number of pivots is represented by cn for the lower group, 
calculated as (PF x NP), and pn for the upper group, calculated 
as ((1-PF) x NP). The population in both groups will be 
selected randomly by uniform distribution following cn and 
pn. 

 
Figure 5. Population pool and next generation 

 
Fig. 5 explains the population pool. In the current 

population pool, the lower group consists of the first pivot 
through the pivot number (LF x NP), and the upper group 
consists of the pivot number (NP - UF x NP) through the last 
pivot. For the offspring, potential and control solutions will be 
created, and the number of all populations will double. 

For each pivot selected as a parent, the NP and RP’s 
decision vectors are used to determine the offspring. First, the 

central search point, or CSP, is calculated by finding the centre 
point between the NP and RP for each dimension. In the 
proposed method, we suppose that the CSP offers the most 
favorable position for finding a better position around  
considered pivot because if the pivot did not reach the local 
minimum, there is always somewhere around the pivot that 
can offer a better answer. By taking a combination of positions 
for a pivot, the RP and NP are highly likely to produce a better 
new solution. The range from the centre point for finding new 
solutions is determined using the range from the NP to the RP. 
Offspring are probabilistically constructed in a normal 
distribution following (6), setting the μ parameter to the CSP 
and σ to the search range. The random output thus has a high 
chance of being near the CSP and spanning the search range. 
Fig. 6 describes the position of the CSP and range for the 
search area in two-dimensional space. 

 
Figure 6. Search range calculation in two-dimensional space 

 

B3. Selection (Remove Unnecessary Population) 
 
When the new generation of the population is created, the 

proposed method selects the pivot that has proved useful for 
the future generation. Meanwhile, it removes some wasteful 
pivots. Two properties are used to indicate useful pivots and 
retain them for the next generation: border pivots and non-
redundant pivots. 

Border pivots are the pivots located at the border of the 
group measured by angular distance. Suppose there is no pivot 
in the opposite area from the considered pivot. The considered 
pivot is then the border pivot. The border pivot may not give 
a good result, but it can control the area for discovering a new 
local minimum. 

A redundant pivot is a pivot placed around the group that 
contains the better result. This kind of pivot must be 
eliminated because it contains a bad decision vector and may 
affect neighbourhood pivots. 
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To indicate the border and non-redundant pivots, the RP 
and NP are calculated by applying MD rather than ED, since 
MD is more closely related to the population. In this phase, 
the RP and NP in the MD domain are calculated for the new 
population pool. The border pivot is the pivot that can find the 
NP and RP in the opposite area. The redundant pivot is the 
pivot that achieved an answer less favorable than its NP and 
RP. 

 
Figure 7. Population with border pivot and redundant pivot 

 
Fig. 7 shows an example of a possible redundant pivot (C2) 

and its border pivots in two-dimensional space. The pivots C5, 
C6 and C8 are the border pivots because no other pivot appears 
in their opposite areas. For example, at C2, there is NP (C7) 
and RP (C1). The pivot C2 will be redundant if the results from 
C1 and C7 are better than C2.  

All populations in the previous and current phase will then 
be merged. This process will be applied to all populations 
except the lower group. We allow this group to nearly find 
each other and reach a local minimum if the considered pivot 
is a redundant pivot and not the border pivot. These results 
will update the list of pivots to be removed when the process 
is finished.  

Sometimes, the total number of remaining populations 
may be less or more than the number of initial populations. 
The following process will compensate for the modified pivot. 

 
B4. Population Compensation (Fill or Remove Population) 

 
After the selection phase, two cases may occur in the 

population pool. The first is that the number of remaining 
populations is greater than the initial number, meaning that 
many individuals are useful. In this case, we must remove the 
extra population from the ascending sorted list. The other case 
is that the remaining population is less than the initial number. 
In this case, the population must be filled.  

 

 
Figure 8. Remaining population management diagram 

 
Fig. 8 shows an example of the remaining population in 

two cases. In the case of extra population, Pnp+1 and Pnp-+2 must 
be deleted, whereas in the case of missing population, Pnp and 
Pnp-1 will be filled with a feasibility population. 

We consider the new population to be filled based on two 
properties. The first is the boundary. We assume that pivots 
are located at the corner of all boundaries and select the 
farthest pivot from the considered pivot as the Boundary pivot 
(BP). Because the BP will provide an extreme solution for 
each boundary, it is used to locate an additional searching field 
for new local optimum areas. Accordingly, the area between 
the considered pivot and the BP may indicate the trend of 
results as well as a new optimising area. The BP centre point 
(BC) is measured using the centre point between the 
considering pivot and the BP. 

The second property is the farthest pivot in the population 
pool. The Farthest pivot centre point (FC) is the centre point 
between the considered pivot and the farthest pivot measured 
by ED. The remaining population in this phase only includes 
useful members, as determined in the previous phase. A 
combination of decision vectors may thus discover omitted 
areas between pivots. 

The BC and FC produce a new population group for each 
pivot. The possible boundaries area is produced using the BC 
as the centre point and the distance between the BC and the 
pivot as the search range with the normal distribution random 
method for all dimensions. The farthest possible population is 
produced using the FC and distance from the FC and the pivot, 
similar to the BC process. 

Lastly, two groups emerge as feasibility populations and 
are randomly filled with the main population pool until the 
population reaches the initial population. This process will 
repeat until the number of the main population reaches the 
maximum. 
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Figure 9. Area of feasibility population in two-dimensional space 

 
Fig. 9 describes the searching area of the feasibility 

population for considering pivot C1 in two-dimensional space. 
There are four BPs due to the combination of the upper bound 
(ub) and lower bound (lb) in two dimensions. In Fig. 9, the 
farthest BP is BP(ub, ub), so the BC is located between C1 and 
BP(ub, ub). C5 is the farthest pivot from C1 and is used to indicate 
the FC and its search area, as shown in Fig. 9. 
 
B5. Process Flow 

 
Steps 1 through 4 will run repeatedly until the requirement 

is reached. Usually, the number of function evaluations is 
used as a requirement. The pseudocode for the process of the 
pivot optimisation algorithm is presented below in Fig. 10. 

 
Figure 10. Pseudocode for pivot optimisation algorithm 

 

For useful implementation, computational complexity or 
big O notation must be considered. Acceptable complexity for 
a single-objective optimisation algorithm is suggested as 
O(N3) where N is the population’s size [45]. Following the 
pseudocode in Fig. 10, which shows the algorithm’s process 
flow when considering one generation, Step 1a takes time 
O(N2) but is dominated by Step 2a, which takes time 
O(N2logN) because the sorting algorithm takes time O(NlogN) 
and N individuals to sort. Steps 2, 3 and 4 take time O(N2) for 
each process. Accordingly, the dominant complexity is 
O(N2logN), which is acceptable for the suggested complexity. 

 
IV. EXPERIMENTAL RESULTS 

 
The pivot optimiser algorithm was implemented and 

benchmarked with several well-known test functions. The 
implementation method and analysis of the results are 
presented in this section. 

 
A. Implementation and Benchmarking 

 
The proposed algorithm was implemented, and results 

were recorded using pagmo. Pagmo is a scientific library for 
massively parallel optimisation developed in C++ [46]. It 
contains a testing environment and algorithms that can be 
used to research the performance of optimisers. A custom 
algorithm can also be added to the environment to compare 
one optimiser with another and a different test suite. 

This paper selects five standard test functions, as shown 
in Table 1: Rosenbrock, Rastrigin, Schwefel, Ackley and 
Griewank. Another four well-known optimisers (GWO, PSO, 
DE and ABC) were selected to compare performance. 

 
TABLE I. BENCHMARK FUNCTION 
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Rosenbrock    
1 2 22

1 1
1

100 1
D

i i i
i

f x x x





        

Rastrigin  2
2

1

10 10 cos 2
D

i i
i

f D x x


       

Schwefel 3
1

418.9828872724338 sin
D

i i
i

f n x x


   

Ackley 
 2

1 1

1 1 1
cos 2

5
4 20 20

D D
i ii i

x x
D Df e e e


 

       
 

Griewank 
2

5
1 1

/ 4000 cos
DD

i
i

i i

x
f x

i 

    

Katsuura 
(CEC2014 
No.12) 

10

1.2

32

6 2 2
11

2 (2 )10 10
1

2

D
j jD

i

j
ji

round x
f i

D D

 
   
 
 


 

HappyCat 
(CEC2014 
No.13) 

 

1/4

2 2
7

1 1 1

0.5 / 0.5
D D D

i i i
i i i

f x D x x D
  

 
     

 
  

 
 



www.manaraa.com

SOMSIN THONGKRAIRAT et al: A NOVEL EVOLUTION OPTIMIZATION ALGORITHM USING A . .  

DOI 10.5013/IJSSST.a.21.04.13                                           13.9                             ISSN: 1473-804x online, 1473-8031 print 

 
DE represents the outstanding performance of an EA in 

solving unconstrained optimisation problems. PSO, GWO 
and ABC represent SI optimisers. PSO is the first successful 
well-known SI algorithm, while ABC is a current successful 
SI algorithm inspired by bee colonies. GWO is another 
successful SI algorithm, which is frequently implemented in 
engineering problems since both engineering problems and 
part of the proposed algorithm use sorting population 
mechanisms. 

We tested 10 and 20 dimensions for all test functions to 
represent low and high dimensions. To make a fair 
comparison, the same number of function evaluations were 
used for all optimisers and set to 10,000 * D (where D is a 
dimension of the problem) according to the suggested 
benchmark method [47]. 

Each function was run 25 times. The average best result 
and SD were recorded for each test function. The results of the 
benchmark function are shown in Table 2. 

 
B. Discussion of Results 

 
As shown in Table 2, the pivot optimiser provides suitable 

results compared to other algorithms. For test functions 1 to 
5, our proposed method’s results fall between the best and 
worst results. DE performed best, producing the greatest 
number of unimodal test functions. On test function 4 (the 
hard multimodal function), SI performed better than DE. 

However, the important point regarding the proposed 
method is the low variance and stability of its results 

according to its purpose. Table 2 shows the outstanding 
performance of the pivot optimiser’s SDs compared with 
other optimisers. DE generally has a good average result, but 
its variance is also high, as shown by the high value of its 
SDs. While SI may perform less favorably, it is more stable. 

The results of test functions 6 and 7 show the 
competitiveness of the present test function results. All 
optimisers had outstanding results, and the proposed 
optimiser’s SD means that it can contest with other well-
known algorithms. 

 
V. CONCLUSION 

 
We have developed a new evolution optimisation 

algorithm with the aim of producing a unique evolution in 
each generation using the multidimensional geometric method 
as a sensible algorithm.  

To validate the proposed algorithm’s performance, several 
related and well-known algorithms were selected to 
benchmark and compare results. The multi-situation testing 
simulation results show that the proposed optimiser is suitable 
for optimising the general problem with a stable result. 

The algorithm’s complexity is acceptable but is also its 
most significant problem due to optimisation speed. It should 
be developed to improve feasibility of future real-world 
implementation. We plan to develop the multi-objective 
version of pivot optimisation and improve its complexity to 
handle various problems in future work

 

 
TABLE II. RESULTS OF BENCHMARK FUNCTION 

Function Pivot Optimiser GWO PSO DE ABC 

Name Dim Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

F1 
Rosenbrock 

10 1.560E-2 6.198E-01 5.866E+00 6.101E-01 3.767E-02 1.652E-02 1.020E-12 4.382E-12 2.947E-01 1.682E-01 

20 5.642E+0 2.177E+00 1.592E+01 7.570E-01 4.753E+00 3.574E+00 3.386E-01 9.457E-01 7.570E-01 3.790E-01 

F2 
Rastrigin 

10 1.362E-4 4.245E-01 0* 0* 3.184E+00 2.321E+00 1.983E-08 2.199E-08 3.755E-06 1.140E-05 

20 5.076E+0 2.030E+00 0* 0* 1.490E+01 4.458E+00 4.450E-08 2.483E-08 3.228E-01 4.242E-01 

F3 
Schwefel 

10 6.145E+2 1.663E+00 1.322E+03 2.857E+02 3.121E+02 1.748E+02 1.557E-08 1.284E-08 2.872E+01 6.055E+01

20 2.556E+3 5.833E+00 3.812E+03 4.953E+02 1.692E+03 3.191E+02 4.752E-08 2.919E-08 3.301E+02 1.163E+02

F4 
Ackley 

10 3.654E-8 1.842E-10 3.996E-16* 0* 3.144E-15 1.517E-15 1.396E-07 6.227E-08 6.752E-14 3.633E-14 

20 4.452E-5 2.720E-03 5.844E-15* 1.774E-15* 3.997E-05 0 3.103E-07 1.354E-07 1.290E+08 4.053E-08 

F5 
Griewank 

10 1.563E-2 4.173E-03 8.259E-03 2.045E-02 2.619E-02 1.273E-02 3.416E-13 1.602E-12 7.288E-03 9.067E-03 

20 3.560E-3 6.242E-04 1.398E-03 3.809E-03 3.852E-03 5.950E-03 4.180E-08 4.375E-08 9.922E-04 3.180E-03 

F6 
Katsuura 
CEC2014 
No.12 

10 1.200E+3 4.802E-01 1.201E+03 4.794E-01 1.200E+03 4.908E-02 1.200E+03 3.072E-02 1.200E+03 9.208E-02 

20 1.200E+3 4.802E-01 1.201E+03 8.194E-01 1.200E+03 2.144E-02 1.200E+03 6.465E-03 1.200E+03 3.030E-02 

F7 
HappyCat 
CEC2014 
No.13 

10 1.300E+3 5.201E-01 1.300E+03 6.768E-02 1.300E+03 3.493E-02 1.300E+03 2.109E-02 1.300E+03 4.097E-02 

20 1.300E+3 5.201E-01 1.300E+03 7.569E-02 1.300E+03 4.828E-02 1.300E+03 4.585E-02 1.300E+03 4.216E-02 

* The results of GWO in F2 and F4 were not used because, in this version of pagmo, GWO is overpowered for some origin-based answer. 
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